APPROACHING & DIAGNOSING PROBLEMS: CHEMISTRY

Stoichiometry & Thermodynamics

- 1. Read the question and circle any key words.
 - ex. (bomb) calorimeter, heat of formation, closed system, energy, exothermic, fusion, temperature change, work
- 2. Write a balanced chemical equation where necessary (Include diagrams if applicable).
- 3. **Remove** significant values given by the question. Assign them each a variable. *
- *Tip: Be as specific and organized as possible when there are multiple elements or energy transfers in question.
 - 4. **Convert** the given values to appropriate units of measurement.
 - 5. **Define** the unknown variable and choose potential formula(s) that could be helpful.
 - 6. **Evaluate** the selected formula(s) in relation to the key words and type of problem.
 - 7. **Determine** any supplementary values that may be required for the formula.
 - 8. Apply the formula to solve for the unknown variable. *
- *Tip: Try to avoid substituting values for variables until the final step for greater precision
 - 9. Evaluate the calculated answer. Does it make logical sense based on the situation?

Quick Reference for Thermodynamic Question Diagnostic

Keyword	Ask yourself	Ask yourself	Suggested Formula
Initial/final	Is the system is closed?	Is there one element in	q= mcΔT
temperature/specific		question?	$\Delta T = T_{final} - T_{intial}$
heat capacity		Are there two elements in question?	mcΔT + mcΔT= 0
Fusion/fission/state change/total energy	Is there one element in question?	Is the system open?	q _{total} = q ₁ +q ₂ +q ₃
	Are there two elements in question?	Is the system is closed?	q ₁ +q ₂ += 0
Work/Transfer of	Is the reaction occurring	Does it reference volume?	W= -P x ∆V
energy	under constant pressure?		
	Are there internal energy changes in system?	Does it reference heat?	$\Delta U = q+w$
Calorimetry/Enthalpy change	Does it mention constant pressure?	Is the reaction occurring in a coffee cup calorimeter?	$q_r + q_{solution} = 0$
	Does it mention constant	Is the reaction occurring in a	$q_r + q_{bomb} + q_{water} = 0$
	volume?	bomb calorimeter?	$q_r + C_{water}\Delta T + mc\Delta T = 0$
Enthalpy changes/	Does it mention the	Is $(\Delta_r H^\circ)$ given?	Multiply $\Delta_r H^\circ$ by mols OR Apply
$(\Delta_{\rm r}H^\circ)/(\Delta_{\rm f}H^\circ)$	enthalpy change for the		Hess' Law
	reaction ($\Delta_r H^\circ$)?	Does it reference enthalpies of	$\Delta_r H^\circ = \Sigma n \Delta_f H^\circ (products) - \Sigma n \Delta_f$
		formation ($\Delta_f H^\circ$)?	H°(reactants)